MODEL SENSITIVITY ANALYSIS

Introduction and Approaches

Existing King County EFDC model was used to perform the sensitivity analysis task. The existing model doesn't turn on the lateral inflow (lateral discharges = 0), and all lateral PCBs concentrations are set to 0. In addition, we broke down the task into the following 8 subtasks:

- 1. Sediment Classification Sensitivity (Table 1)
- 2. Upstream boundary flow -/+ 50%
- 3. Upstream boundary cohesive sediment concentration -/+ 50%
- 4. Upstream boundary Total PCBs concentration -/+ 50%
- LDW Sediment bed PCBs Concentrations:
 - a) 130 μg/kg dw, and
 - b) 2 μg/kg dw
- 6. Including the Lateral PCBs loads with PCBs concentrations of: 1) 0 μ g/L, 2) 0.01 μ g/L, 3) 0.014 μ g/L, 4) 0.03 μ g/L, 5) 0.1 μ g/L, and 6) 0.2 μ g/L, respectively. The difference between the Existing model and the 0 μ g/L scenario is the 0 μ g/L scenarios has the lateral discharges (non-zero discharge, 0 PCBs and non-zero sediment concentration). Three sediment bed PCBs conditions are considered:
 - a) Existing bed PCBs
 - b) 130 μg/kg dw
 - c) 2 µg/kg dw
- 7. Steady-State flow scenarios (Table 2)
 - a) Upstream discharge (average, 90th and 10th percentile discharge) scenarios, and
 - b) Open boundary water surface elevation (median, 90th and 10th percentile) scenarios
- 8. Model Parameters Sensitivity (Table 3)

Notes:

- All 360-Day EFDC runs in Subtask 1 were cold-started from Day 0. Compare the Scenario and Existing model results at Day 360.
- Steady-State flow scenarios (Subtask 7) were cold-started from Day 0. Compare the results at Day 11.
- All 90-Day runs (Day 360 450) for the rest of the sensitivity Subtasks are hot-started based on the specific restart files at Day 360. Compare the results at Day 400.

MODEL SENSITIVITY ANALYSIS

Table 1. Sediment Classification Sensitivity

Existing Model Information	Senarios
Existing Model: 2 cohesives and 1 noncohesive (2+1)	1. (1+1) Combine Clay and Silt into one Cohesive Class.
	2 Classes: Clay and Silt (< 63 μm); Sand (63 - 500 μm)
	2. (3+1) Split Silt into 2 Cohesive Classes.
	4 Classes: Clay (< 4 μm); Fine and Medium Silt (4 - 20 μm);
	Coarse Silt (20 - 63 μm); Sand (63 - 500 μm)
	3. (2+2) Split Sand into 2 Noncohesive Classes.
3 Classes: Clay (< 4 μm); Silt	4 Classes: Clay (< 4 μm); Silt (4 - 63 μm); Fine Sand (63 - 250
(4 - 63 μm); Sand (63 - 500 μm)	μm); Medium Sand (250 - 500 μm)
	4. (3+2) Split Silt into 2 Cohesive Classes and split Sand into
	2 Noncohesive Classes.
	5 Classes: Clay (< 4 μm); Fine and Medium Silt (4 - 20 μm);
	Coarse Silt (20 - 63 μm); Fine Sand (63 - 250 μm); Medium
	Sand (250 - 500 μm)

Table 2. Steady-State Flow Scenarios (Upstream Discharge and Downstream Water Surface Elevation)

Upstream Flow Scenarios	Upstream Discharge (cfs)	Open Boundary Elevation (ft MSL)		
1. Average	1,340	0.00		
2. Wet (90th percentile)	2,720	0.00		
3. Dry (10th percentile)	280	0.00		
Open Boundary Scenarios	Upstream Discharge (cfs)	Open Boundary Elevation (ft MSL)		
Open Boundary Scenarios 1. Median Stage	Upstream Discharge (cfs) 1,340	Open Boundary Elevation (ft MSL) 0.72		

MODEL SENSITIVITY ANALYSIS

Table 3. EFDC Model Parameter Scenarios

Model Parameter	Description	Base Value	Senarios
Settling Velocity (m/s), W _s	Clay (1 - 4 μm)	1.0×10 ⁻¹⁰	5.0×10 ⁻¹¹
			1.5×10 ⁻¹⁰
	Silt (4 - 63 μm)	2.0×10 ⁻⁴	1.0×10 ⁻⁴
			3.0×10 ⁻⁴
	Sand (63 - 500 μm)	0.04	0.02
			0.06
Critical Shear Stress for Deposition (Pa), τ _{cd}	Clay (1 - 4 μm)	0.10	0.05
			0.15
	Silt (4 - 63 μm)	0.10	0.05
			0.15
Critical Shear Stress for Resuspension (Pa), τ _{ce}	Clay (1 - 4 µm)	0.30	0.15
			0.45
	Silt (4 - 63 μm)	0.30	0.15
Sediment Bed Reference Surface Erosion Rate (g/m²-s), ER	Clay (1 - 4 μm)	2.0E-04	0.45
			1.0E-04 3.0E-04
	Silt (4 - 63 μm)	2.0E-04	1.0E-04
			3.0E-04
Critical Shear Stress for Noncohesive			0.08
(Pa), τ _c	Sand (63 - 500 μm)	0.16	0.24
7 7 2	Clay (1 - 4 μm)	5.5×10 ⁻³	2.75×10 ⁻³
			8.25×10 ⁻³
Partitioning Coefficient at Water	Silt (4 - 63 μm)	5.5×10 ⁻³	2.75×10 ⁻³
Column (L/mg), K _{pw}			8.25×10 ⁻³
	Sand (63 - 500 μm)	0	
Partitioning Coefficient at Sediment Bed (L/mg), K _{pb}	Clay (1 - 4 μm)	1.4×10 ⁻²	7×10 ⁻³
			2.1×10 ⁻²
	Silt (4 - 63 μm)	1.4×10 ⁻²	7×10 ⁻³
			2.1×10 ⁻²
	Sand (63 - 500 μm)	0	
Sediment-Water Interface Flux Rate		1.0×10 ⁻⁶	5.0×10 ⁻⁷
(m/s), D _{bw}			1.5×10 ⁻⁶
Particle Mixing Diffusion Coefficient		1.0×10 ⁻⁶	5.0×10 ⁻⁷
in Sediment Bed (m²/s), Dpb			1.5×10 ⁻⁶
·		0.10	0.05
Particle Mixing Depth (m), D _{pm}			0.15